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DETERMINING THE LIMITING SOLUTIONS OF NONSTATIONARY

AXISYMMETRIC HELE-SHAW PROBLEMS

UDC 532.5V. P. Zhitnikov, O. R. Zinnatullilna,

S. S. Porechnyi, and N. M. Sherykhalina

Numerical solution of the Hele-Shaw problem reduces to solution of three boundary-value problems
of determining analytic functions of a complex variable in each time step: conformal mapping of
the range of the parametric variable to the physical plane, the Dirichlet problems for determining
the electric-field strength, and the Riemann–Hilbert problem for calculating partial time derivatives
of the coordinates of points of the interelectrode space (the images of the points on the boundary of
the parametric plane are fixed). Unlike in the two-dimensional problem, the electric-field strength is
determined using integral transformations of an analytic function. Approximation by spline function
is performed, and more accurate and steady (than the well-known ones) general solution algorithms
for the nonstationary axisymmetric problems are described. Results of a numerical study of the
formation of stationary and self-similar configurations are presented.
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Introduction. Problems for the Laplace equation with moving boundaries in which the velocity of motion of
the boundary is proportional to the potential gradient Φ are called the Hele-Shaw free-boundary problems. Solutions
of these problems can be treated as viscous fluid flows [1–3], metal dissolution processes in electrochemical machining
[4, 5] and other processes [6–8]. In the present paper, the problem is formulated with reference to electrochemical
machining.

Investigation of the shaping of the free surface is significantly complicated by the need to perform complex
calculations of the formation of the final configurations. For example, in a calculation of the coordinates of the
surface with accuracy to 12–14 decimal places, the parameter λ of the exponential time dependence of the surface
curvature at a point e−λt can have only 1–2 exact decimal places.

Solutions of Hele-Shaw problems have previously been obtained using the finite-difference and finite-element
methods [9, 10] and the boundary-element method [11–14]. Nevertheless, the methods developed earlier do not
have sufficient stability against error accumulation in calculations of long transition processes.

The purpose of the present work is to develop numerical analytical methods and to study the time charac-
teristics of the processes of formation of stationary, self-similar, and final configurations.

1. General Formulation of the Problem. During electrochemical machining, the machined surface is
the anode, and the tool electrode is the cathode. After the interelectrode space is filled with an electrolyte and the
electrodes are connected to a current source, there is dissolution of the anode material. The dissolution rate V —
the velocity of motion of each point of the boundary (along the normal) — is defined by the Faraday law (written
with the Ohm law taken into account):

V = kEn. (1)

Here k is the electrochemical constant and En is the electric-field strength component normal to the boundary.
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Fig. 1. Meridional section of the interelectrode space: 1) zone of stationary process; 2) zone of
self-similarity (singularity); 3) final zone; ADB is the free boundary; the point C is a point source
which moves at a velocity V0 to the free surface.

The required shape of the machined surface can be obtained by choosing the shape of the tool electrode and
the trajectory of its motion.

We consider the problem of shaping of a free (machined) surface by a moving point source — a needle
electrode (NE). The meridional section of the interelectrode space (IES) is shown in Fig. 1.

The ideal model of the process assumes constant electrical conductivity of the electrolyte in time and space.
Since the dissolution rate is low (usually a few millimeters per minute), the electric field is considered quasistatic.
In this case, the electric strength vector field is potential and solenoidal. The potential Φ and the stream function Ψ
of the axisymmetric field satisfy the equations

∂Φ
∂X

=
1
Y

∂Ψ
∂Y

,
∂Φ
∂Y

= − 1
Y

∂Ψ
∂X

. (2)

The solution of the nonstationary problem reduces to a search for the functions Φ(X,Y, t) and Ψ(X,Y, t)
which satisfy Eqs. (2) in the IES (whose shape depends on time t) under definite boundary conditions. In the case
of an ideal process, the boundary conditions are given as the conditions of constant values for the function Φ(X,Y, t)
on the boundaries corresponding to the electrode surfaces and the function Ψ(X,Y, t) on the isolated (impenetrable)
boundaries. The change in the boundary shape is defined by the Faraday law (1), where En = ∂Φ/∂n. The initial
shape of the machined surface, and the shape and velocity (trajectory) of motion of the tool electrode are specified.

The potential difference between the anode and the cathode is equal to the voltage applied to them U . If
the size of the cathode is smaller than the characteristic distance to the anode, the tool electrode can be considered
a point one. Then, the potential of the tool electrode is equal to −∞ and the difference between the values of the
stream function on the axis at the left and at the right of the source is equal to the ratio of the current strength I
to the electrical conductivity of the electrolyte κ.

It is of interest to study the variation in the shape of the boundary in time. Figure 1 shows three zones
formed by different methods: 1) zone of the stationary process, in which the surface shape near the PE ceases to vary
in spite of dissolution and is only shifted together with the NE; 2) zone of formation of the final shape, which do not
vary after the end of dissolution; 3) zone of singularity, which is formed only if, at the initial time, the PE touches
the machined surface. In this case, in the vicinity of the surface, a self-similar process occurs instantaneously, in
which the geometrical similarity of the IES is preserved.

2. Polozhii Transformations. The potential and stream function of an axisymmetric field can be ex-
pressed in terms of the analytic function f(Z) of the complex variable Z = X + iY in a region whose boundaries
coincide in shape with the boundaries of the interelectrode space in the meridional section by using the following
formulas (Polozhii integral transformations [15]):
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Φ(X0, Y0) = − 1
π

Im

Z0∫

∞
f(Z)

dZ√
(Z − Z0)(Z − Z0 )

; (3)

Ψ(X0, Y0) =
1
π

Im

Z0∫

∞
f(Z)

(Z −X0) dZ√
(Z − Z0)(Z − Z0 )

. (4)

Here Z0 = X0 + iY0 and Z0 = X0 − iY0.
Thus, solution of the axisymmetric problems reduces to solution of a certain plane problem of determining

the analytic function W (Z) which is a complex potential of a certain auxiliary plane field. The potential and stream
function of axisymmetric flow are obtained by the integral transformations (3) and (4) of the function f(Z) = dW/dZ

[16]. In particular, for a point source located at the point XC + i0, we have

Φ(X0, Y0) = − 1
4π

√
(X0 −XC)2 + Y 2

0

, Ψ(X0, Y0) =
1
4π

− X0 −XC

4π
√

(X0 −XC)2 + Y 2
0

,

W (Z) =
1
2π

ln (Z −XC), f(Z) =
1

2π(Z −XC)
.

According to [16], on the segment (CD] of the real axis,

Φ(X0, 0) = −f(X0 + i0)/2, Ψ(X0, 0) = 0.

The boundary conditions of the auxiliary plane problem are written as the integral equations obtained by
setting the right sides of (3) for equipotential boundaries or the right sides of (4) for impenetrable boundaries equal
to a constant. Equality to zero of the imaginary or real part of f(Z) generally does not imply that the corresponding
integrals are equal to zero or a constant.

The longitudinal and radial strength components [16] are determined from formulas (3) and (4):

Ex =
∂Φ
∂X0

= − 1
π

Im

X0+iY0∫

X1+i0

df

dZ

dZ√
(Z − Z0)(Z − Z0)

; (5)

Ey =
∂Φ
∂Y0

= − 1
πY0

Im

X0+iY0∫

X1+i0

df

dZ

(Z −X0) dZ√
(Z − Z0)(Z − Z0)

. (6)

Here X1 + i0 is a certain point on the symmetry axis X .
3. Mathematical Formulation of the Problem. We conformally map the regions corresponding to

the IES in the planes Z and W onto a strip (Fig. 2). The machined surface ADB is mapped onto the real axis,
and the cut A′CB′ onto the upper face of the strip. In this case, the solution of the problem of determining the
function W (Z) analytic in the IES can be represented in the parametric form Z(χ), W (χ). The boundaries of the
IES are determined using the partial derivative (∂Z/∂t)(χ, t) by time discretization using a numerical method.

Thus, at each time t, three boundary-value problems are solved: to find three functions W (χ, t), Z(χ, t),
and (∂Z/∂t)(χ, t), which are analytical inside the strip χ and satisfy certain boundary conditions.

The boundary condition for the function W (χ, t) is the above-mentioned equipotentiality condition for the
anode (and, generally, cathode). On the boundary A′CB′ for a point cathode, Ψ(X0, 0) = I/κ.

The boundary condition for the function Z(χ, t) is the equality of the imaginary (or real) part of Z(χ, t) on
the lower boundary of the strip χ = σ (−∞ < σ <∞) and the function g1(σ, t) known for each fixed value t. This
boundary-value problem is solved analytically (using the Schwarz formula). At t = 0, the function g1(σ,0) is known
from the initial condition, and the remaining values are obtained by time integration of the imaginary (or real) part of
(∂Z/∂t)(σ+ i0, t). On the boundary A′CB′ for a point cathode, ImZ(σ+ i/2, t) = 0 and Im (∂Z/∂t)(σ+ i/2, t) = 0.

For the function (∂Z/∂t)(χ, t), the boundary conditions on the boundary ADB are given by the Faraday
law (1). Let the tangent to the machined surface make angle θ with the x axis. Then, the projections of the
displacement vectors of the point dZ and the strength E onto the normal to the surface can be calculated by the
formulas Δn = Im (e−iθ dZ) and En = Im (e−iθ E). Since, on the boundary,
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Fig. 2. Image of the IES in the planes of the parametric variable χ (a) and the complex potential w (b).

∂Z

∂σ
(σ + i0, t) = ±

∣∣∣∂Z
∂σ

∣∣∣ eiθ,

the Faraday law (1) leads to the equality

Im
( ∂Z
∂σ

dZ

dt
(σ + i0, t)

)
= k Im

(
E
∂Z

∂σ

)
,

whence we have

Im
( ∂Z
∂σ

∂Z

∂t
+
∂Z

∂σ

∂Z

∂σ

dσ

dt

)
= k Im

( ∂Φ
∂X

+ i
∂Φ
∂Y

) ∂Z
∂σ

.

According to (2), condition (1) can be written in the final form as follows [17]:

Im
( ∂Z
∂σ

∂Z

∂t

)
= −k 1

Y

∂Ψ
∂σ

. (7)

We introduce the dimensionless coordinates and time:

z =
Z

l
, x =

X

l
, y =

Y

l
, τ = λ

kI

κl3
t. (8)

Here l is the characteristic size (independent of time), I is the value of the current in the electrochemical cell, and
κ is the electrical conductivity of the electrolyte. The potential and stream function are represented as Φ = ϕI/(κl)
and Ψ = ψI/(κl2), respectively. In the dimensional variables, equality (7) becomes

∂x

∂τ

∂y

∂σ
− ∂y

∂τ

∂x

∂σ
=
λ

y

dψ

dσ
. (9)

Equality (9) is the boundary condition for determining the analytic function (∂z/∂τ)(χ, τ) on the part of the
boundary corresponding to the anode surface. As the characteristic size l it is convenient to choose the diameter
of the groove D formed in the case of a large penetration of the tool electrode into the workpiece (according to the
Faraday law k/(κI) = V0πD

2/4, where V0 is the velocity of motion of the NE). The dimensionless time τ is chosen
so that the dimensionless velocity of motion of the source is equal to dxC/dτ = 1. Then,

λ =
π

4
, l = D =

2√
π

√
kI

κVet
, τ =

4
π

kI

κl3
t.

4. Method of Solution of the Problem. In view of the aforesaid, the solution of the nonstationary
axisymmetric problems includes three main stages: finding the conformal map of the region of the parametric
variable onto the physical plane, determining the strength components by integral transformations of the analytic
function, and calculating the partial time derivatives of the coordinates of the surface.

The problem of conformal mapping is solved as follows. As the range of the parametric variable χ = σ + iν

it is convenient to use a strip of width 1/2 with the correspondence of points indicated in Fig. 2.
The function mapping the plane χ onto the physical plane is sought in the form of the sum

z(χ) = z0(χ) + zΔ(χ).

As χ → ∞, the quantity Re zΔ(χ) → 0. For g > 0, the function z0(χ) = ig sinh πχ conformally maps the strip of
the plane χ onto the left half-plane with a cut. In this case, the boundary χ = σ is mapped onto the surface ADB,
and the boundary χ = σ + i/2 onto the cut A′CB′. The point source is at the point z0(i/2) = −g.
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The function zΔ(χ) is determined as follows. The solution of the problem is sought at the nodal points σm

(m = 0, . . . , n) on the boundary χ = σ. The required quantities are the values Re zΔ(σm) = xm. We assume that,
for σ = σn, Re zΔ(σn) = 0 because, as σ → ∞, the function zΔ(σ) decreases exponentially. The values of Re zΔ(σ)
at the points between the nodal points are found in the same way as is done in [18, 19], using a cubic spline P (σ)
which has two continuous derivatives.

To find the function zΔ(χ), we use the Schwarz formula [20] taking into account that zΔ(χ) is an analytic
function which has [as well as z0(χ)] real values on the straight line Imχ = 1/2. Analytic continuation of the
function zΔ(χ) onto a strip of unit width yields

zΔ(χ) = −i2 sinh πχ

∞∫

0

P (σ)
cosh πσ

cosh 2 πσ − cosh 2 πχ
dσ. (10)

The derivative (dzΔ/dχ)(χ) is determined by differentiating (10):

dzΔ
dχ

(χ) = −i2 cosh πχ

∞∫

0

dP

dσ
(σ)

sinh πσ
cosh 2 πσ − cosh 2 πχ

dσ.

Specifying the condition Re [z0(i/2) + zΔ(i/2)] = xC , we find the parameter g:

z(i/2) = −g + 2

∞∫

0

P (σ)
dσ

cosh πσ
= xC .

The axisymmetric problem of determining the strength is solved by reducing it to an auxiliary plane problem,
which is solved by conformally mapping the region corresponding to the IES in the plane of the complex potential
(see Fig. 2b) onto the plane of the parametric variable χ (see Fig. 2a).

In the plane problem, the range of the complex potential is a half-strip of unit width:

w0(χ) =
1
π

ln
(

tanh
π

2

(
χ− i

2

))
. (11)

The derivatives are given by the formulas

dw0

dχ
(χ) =

i

cosh πχ
,

dw0

dz0
= − 1

gπ cosh 2 πχ
,

∂2w0

∂z0 ∂χ
(χ) =

2π sinh πχ
cosh 3 πχ

. (12)

In the auxiliary plane problem, the range of the complex potential is a curvilinear half-strip (see Fig. 2b)
since, in this problem, the boundaries corresponding to the machined surface are nonequipotential. The variation in
the potential on the boundary of the range of the solution of the plane problem is given by the boundary condition
(3), where f(z) = (dw/dz)(χ) [16], Φ = const, i.e., by the condition of equipotentiality of the boundary in the
axisymmetric problem.

The dimensionless potential is sought in the form of the sum

ϕ(x, y) = ϕ0(x, y) + ϕ1(x, y) = − 1
4π

1√
(x+ l)2 + y2

− 1
π

Im

σ0∫

0

∂w

∂σ
(σ)

dσ√
(z − z0)(z − z0)

,

where ϕ0(x, y) is the potential of the point source located at a distance l on the left of the coordinate origin.
The strength components are calculated by formulas (5) and (6) with the replacement of the integration

variable by σ and by changing the integration contour (since the integrand function is analytic in z):

∂

∂x
ϕ(x, y) = − 1

4π
x+ l

[(x+ l)2 + y2]3/2
− 1
π

Im

σ0∫

0

∂2w

∂z ∂σ
(σ)

dσ√
(z − z0)(z − z0)

,

∂

∂y
ϕ(x, y) =

1
4π

y2

[(x+ l)2 + y2]3/2
+

1
πy

Im

σ0∫

0

∂2w

∂z ∂σ
(σ)

(z − x0) dσ√
(z − z0)(z − z0)

.

(13)
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The solution is sought in the form of the function

f1(χ) =
∂2w

∂z ∂χ
(χ).

This function should have properties similar to the properties of the function (12), i.e., for χ = σ + i0,
its real part should be an odd function of σ, and, for χ = σ + i/2, the function f1(σ + i/2) should be
real. Then, it can be continued analytically to the strip of unit width. In this case, Re f1(σ + i) =
Re f1(σ + i0).

The required parameters are the values of the real part of the function Re f1(σm) = fm at the nodal points σm

(m = 1, . . . , n). For σ = σ0 = 0, we have Re f1(σ0) = 0 because the real part of f1 is an odd function of σ, as well
as the function w0(χ) in (11). We assume that, for σ = σn, Re f1(σn) = 0 because, for σ → ∞, function f1(σ)
decreases exponentially. The values of Re f1(σ) at the points located between the nodal points are found using a
cubic spline.

To find the function f1(χ), we use the Schwarz formula

f1(χ) = −i2 cosh πχ

∞∫

0

S(σ)
sinh πσ dσ

cosh 2 πσ − cosh 2 πχ
.

In the solution using the collocation method, the condition of equipotentiality of the machined surface leads
to the equations

Fm = Re
[(∂ϕ
∂x

+ i
∂ϕ

∂y

) ∂z

∂σ
(σm)

]
= 0, m = 0, . . . , n− 1, (14)

which is the equality of the tangential strength component to zero. Substituting the expression of f1(σ) written in
terms of the spline and Schwarz formula into (13) and substituting the obtained expressions into (14), we have a
system of linear (in the variables fm) equations.

After the solution of the system of linear algebraic equations, the values of fm are substituted into (13) to
calculate ∂ϕ/∂x and ∂ϕ/∂y.

The nonstationary problem is solved using discrete time steps Δτ . In each time step τj , we solve the problems
of conformal mapping the strip of the parametric plane χ onto the physical plane z and determining the strength
components ∂ϕ/∂x, and ∂ϕ/∂y. The conformal mapping problem is solved completely only for τ = 0 because,after
each time step, the values of the variables xm(τj) are substituted into the spline and Schwarz integrals used.

After determining ∂ϕ/∂x, ∂ϕ/∂y, it is necessary to solve the third boundary-value problem: to find the
partial derivative

∂zΔ
∂τ

(χ, τj) =
∂xΔ

∂τ
(χ, τj) + i

∂yΔ
∂τ

(χ, τj)

as an analytic function of the complex parameter χ. This problem has a unique solution, as well as the Riemann–
Hilbert problem [17].

The derivative (∂zΔ/∂τ)(χ, τj) is calculated in the same way as the conformal map zΔ(χ, τj) . In each
time step τj = jΔτ , the required parameters are the values of Re (∂zΔ/∂τ)(σm, τj) = qm. The values of
Re (∂zΔ/∂τ)(σ, τj) at the points located between the nodal points are found by using the cubic spline R(σ, τ).

To find the function (∂zΔ/∂τ)(χ, τj), we use a Schwarz formula similar to (10). For χ = i/2, the same
formula is used to determine dg/dτ from the specified values of (dxC/dτ)(τ) = 1:

−dg
dτ

(τ) +
∂xΔ

∂τ
(i/2, τ) = −dg

dτ
+ 2

∞∫

0

R(σ, τ)
dσ

cosh πσ
=
dxC

dτ
= 1.

The values of qm are determined by the collocation method [18, 19] so that the boundary condition (9) is
satisfied at the nodal points σm, m = 1, . . . , N .

After solution of the system of linear algebraic equations and determination of the partial deriva-
tives ∂xΔ/∂τ = qm, a time step is made according to the predictor–corrector scheme of second-order accuracy.

Next, ∂zΔ/∂σ, ∂ϕ/∂x, ∂ϕ/∂y, etc., are calculated.
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Fig. 3. Surface shape formed by machining with a stationary electrode: (a) initial stage of the
process; (b) attainment of the stationary regime (the scale unit is the penetration depth).

a

b

Fig. 4. Surface shape formed by machining with a moving electrode (at the beginning of the process,
the gap between the electrode and the machined surface is equal to zero): (a) axisymmetric problem;
(b) plane problem [19].

5. Results of Numerical Solution. We consider the machining process with a stationary PE located at
distance l from the initially plane machined surface. In this case, the quantity l is a scale unity and the value of λ
in (8), (9) is set equal to unity. Figure 3a shows the surface shape in the initial stage of the process (with a uniform
time step), and Fig. 3b shows the attainment of a stationary regime (the step is proportional to the groove depth).
It is evident that the shape of the groove is similar to that of the corresponding self-similar solution [21]. The scale
of the figure is chosen such that the groove depth is always equal to unity.

Thus, during machining with a stationary NE, the machined surface of any shape takes a self-similar form,
as in the plane case [18, 19]. Hence, the self-similar solution is an attractor.

The calculation results for the process of machining with a moving electrode for zero gap are given in Fig. 4.
It is assumed that, initially, the process is self-similar. This assumption is based on the following facts: in the initial
stage of the process, the dissolution rate is much higher than the velocity of motion of the NE; the self-similar shape
is an attractor (according to the calculation results given in Fig. 3).

A stationary regime occurs near the NE. Thus, in the case of a moving NE, the attractor in its vicinity is the
stationary solution. At the same time, near the beginning of the groove on the machined surface, a certain shape
(further called the final shape) forms due to the removal of the PE from this region and the cessation of dissolution.
A comparison shows that the solutions of the axisymmetric (see Fig. 4a) and plane (see Fig. 4b) problems are in
good qualitative agreement.

6. Determining Parameters of Transitional Processes. Below, we study the formation of self-
similar, stationary, and final shapes with increasing dimensionless time. Figure 5a gives a curve of the product
of the curvature K and depths l of the groove on the machined surface (see Fig. 3) versus the logarithm of the
dimensionless time τ for a stationary NE. Figure 5b (curve 1) gives a curve of the decimal logarithm of the relative
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Fig. 5. Dependences of Kl (a) and − log δ (b) on log τ during the formation of a self-similar surface
shape: 1) main component of the dependence; 2) second component of the dependence.
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Fig. 6. Time dependences of the gap size (a) and the quantity − log δ (b) during formation of a
stationary gap: 1) main component of the dependence; 2) second component of the dependence.

difference − log δ = − log |K(τ)l(τ)/Kl∗ − 1| from log τ (Kl∗ = 0.948 474 795± 10−8 is the limiting (as τ → ∞)
value obtained independently of the solution of the self-similar problem [21]). It is evident that this dependence is
nearly linear. As a result of filtration [22] of the data of the nonstationary problem, the obtained values correspond
to the limiting value to within 8–9 places.

The angular coefficient of the linear dependence was estimated using the filtration method [22]. The calcu-
lations gave the angular coefficient of the logarithmic dependence kτ = 1/3 (relative calculation error δk = 10−5).
The suppression of the main component of the dependence by filtration revealed the presence of the component
with a doubled value of the angular coefficient (curve 2 in Fig. 5b).

Thus, from the numerical experiment, it follows that the time dependence of the quantityKl∗ is approximated
by the function

K(τ)l(τ) = Kl∗(1 − cτ−1/3).

We note that the self-similar solution is characterized by the power-law dependence l(τ) = l0τ
1/3.
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Fig. 7. Time dependences of the curvature (a) and the quantity − log δ (b) during formation of a stationary
surface shape: 1) main component of the dependence; 2) second component of the dependence.
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Fig. 8. Time dependence of the quantity − log δ = − log |K(τ )/K∗ − 1| (a) and the slow component of this
dependence (b) during formation of the maximum value of the curvature of the final surface shape: 1) main
component of the dependence; 2) second component of the dependence.

Figure 6a shows the dependence of the gap size between a moving PE (see Fig. 4a) and the nearest point
of the machined surface on the dimensionless time τ . Figure 6b gives the dependence of the quantity − log δ =
− log |S(τ)/S∗−1| on the dimensionless time τ (S is the gap size and S∗ = 0.282186858398±10−12 is the stationary
gap size obtained by solving the stationary problem [21]). It is evident that this dependence is nearly linear, i.e.,
the law of formation is nearly exponential:

S(τ) = S∗(1 − c · 10−kττ ).

From the calculations, it follows that the angular coefficient of the logarithmic dependence is kτ = 2.088805±
10−6. The angular coefficient for the second component (curve 2 in Fig. 6b) is approximately twice this value.

Figure 7a gives a curve of the curvature of the machined surface at the point the nearest to the PE versus the
dimensionless time τ , and Fig. 7b gives a curve of − log δ = − log |K(τ)/K∗ − 1| versus τ (K is the curvature and
K∗ = 2.716 660± 10−6 is the stationary curvature). From the calculations, it follows that the angular coefficient is
kτ = 2.0888± 2 · 10−4.
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Figure 8 gives a curve of − log δ = − log |K(τ)/K∗ − 1| versus τ for K∗ = −15.065 ± 5 · 10−3 during
formation of the final surface shape. From the calculation results, the angular coefficient is kτ = 2.08 ± 2 · 10−2.
Increasing the calculation accuracy revealed a new effect not noticeable earlier due to error: the curvature modulus
first increases to a value of −K ≈ 15.073 and then decreases to a value of −K ≈ 15.065 (Fig. 8a). The characteristic
rate of decrease in the values of −K is much lower than the characteristic rate of their increase. In this case, the
angular coefficient is kτ ≈ 0.07 (in Fig. 8a, kτ ≈ 2.08). After the suppression of this component of the dependence
− log δ(τ), it is evident that there is a second component (curve 2 in Fig. 8b).

For zero initial gap, narrowing of the hole in the final zone of the machined surface (see Fig. 4a) was observed.
The dependence of the minimum hole radius in the machined material versus time is given in Fig. 9. The angular
coefficient was found to be kτ = 2.089 ± 2 · 10−3.

Conclusions. A method for the numerical solution of nonstationary axisymmetric Hele-Shaw problems
using integral transformations of analytic function was proposed. The results of numerical calculations confirmed
the high efficiency of the method.

The studies of the time characteristics of shape formation in the stationary and final zones showed that the
time constant kτ had identical values within accuracy for all dependences considered. The calculation accuracy of
the final shape was lower than that of the stationary shape, and the spread in the values of kτ is therefore larger.
Nevertheless, it can be argued that, in transition to the stationary and final surface shapes, no difference between
the values of kτ was found. Invariance of this quantity for various conditions of establishment of the stationary
process is unquestionable. However, the fact that this quantity determines the rate of formation of the final shape
is difficult to predict in advance.
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